atom in the water molecule. The average Ru-O-(edta) distance is 2.018 (3) Å and Ru—O(water) is 2.131 (3) Å. Although the Ru-O distances are somewhat longer than those of the corresponding Fe^{III} complex [1.98 (3) and 2.07 (3) Å, respectively], the bond angles for each chelate ring of the Ru complex, N(1)—Ru—O(1) [85·0 (1)°], N(1)—Ru— O(3) $[82.0 (1)^{\circ}]$, N(2)—Ru—O(7) $[80.7 (1)^{\circ}]$ and N(1)—Ru—N(2) [86.0 (1)°], are larger than those of the corresponding Fe^{III} complex [83 (1), 77 (1), 78 (1) and 83 (1)°, respectively (Kennard, 1967)]. The bond angles between the *trans* positions for the Ru complex, O(1)—Ru—O(7) [173·4 (1)°], N(2)—Ru—O(3) $[163.0 (1)^{\circ}]$ and N(1)—Ru—O(W) $[174.9 (1)^{\circ}]$ are also closer to 180° than those of the corresponding Fe^{III} complex [167 (1), 155 (1) and 168 (1)°, respectively]. These indicate that $[Ru(Hedta)(H_2O)]$ assumes a more regular octahedral structure than [Fe(Hedta)(H₂O)].

Intermolecular hydrogen bonds are recognized between the non-coordinated O atoms in edta and the O atom in water, $O(2)\cdots O(W)(1-x, -\frac{1}{2}+y, \frac{1}{2}-z)$ [2.819 (4) Å], $O(4)\cdots O(W)(1-x, -\frac{1}{2}+y, \frac{1}{2}-z)$

 $[3 \cdot 139 (5) \text{ Å}]$ and O(6)...O(W) (1 - x, 1 - y, 1 - z) $[3 \cdot 020 (5) \text{ Å}].$

References

- BAJAJ, H. C. & VAN ELDIK, R. (1988). Inorg. Chem. 27, 4052-4055.
- FRENZ, B. A. (1978). The Enraf-Nonius CAD-4 SDP A Real Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. SCHENK, R. OLTHOF-HAZEKAMP, H. VAN KONINGSVELD & G. C. BASSI, pp. 64–71. Delft Univ. Press.
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- KENNARD, C. H. L. (1967). Inorg. Chim. Acta, 1, 347-354.
- KUSHI, Y., MORIMASA, K., YOSHITSUGU, K. & YONEDA, H. (1985). 35th Symp. Coord. Chem., Hiroshima, Japan. Abstract 2B01.
- LIND, M. D., HOARD J. L., HAMOR, M. J. & HAMOR, T. A. (1964). Inorg. Chem. 3, 34-43.
- LOPEZ-ALCALA, J. M., PUERTA-VIZCAINO, M. C., GONZALEZ-VILCHEZ, F., DUESLER, E. N. & TAPSCOTT, R. E. (1984). Acta Cryst. C40, 939–941.
- MUKAIDA, M., OKUNO, H. & ISHIMORI, T. (1965). Nippon Kagaku Zasshi, 86, 598–600.
- SOLANS, X., ALTABA, M. F. & GARCIA-ORICAIN, J. (1984). Acta Cryst. C40, 635-638.
- TAQUI KHAN, M. M., SHUKLA, R. S. & RAO, A. P. (1989). Inorg. Chem. 28, 452–458.

Acta Cryst. (1990). C46, 2329-2331

The Structure of 1,1,1,2,2,2,3,3-Octacarbonyl- μ -(1–3- η -cyclododeca-1,6,9-trien-1-yl-3-ylidene)-2,3- μ -hydrido-3-[(As,As,As',As'-tetraphenyl)methylenebis(arsine)-As]-triangulo-triruthenium(0)(3 Ru-Ru)

By Hoong-Kun Fun,* Omar bin Shawkataly† and Siang-Guan Teoh‡§

School of Physics, Chemical Sciences Programme, Centre for Off-Campus Studies, School of Chemistry, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia

(Received 27 November 1989; accepted 6 April 1990)

Abstract. $[\text{Ru}_{3}(\text{C}_{12}\text{H}_{15})(\text{H})(\text{C}_{25}\text{H}_{22}\text{As}_{2})(\text{CO})_{8}], M_{r} = 1159\cdot85$, orthorhombic, $Pca2_{1}$, $a = 30\cdot385$ (2), $b = 10\cdot047$ (2), $c = 14\cdot402$ (3) Å, V = 4396 (1) Å³, Z = 4, $D_{x} = 1\cdot752$, $D_{m} = 1\cdot740$ Mg m⁻³ (flotation in chloroform and iodomethane), $\lambda(\text{Mo } K\alpha) = 0\cdot71069$ Å, $\mu = 24\cdot14$ cm⁻¹, F(000) = 2280, T = 295 K, $R = 0\cdot0429$ for 3712 observed reflections. The structure contains a triangle of Ru atoms; Ru(1) and Ru(2) are bonded to three CO groups, and Ru(3) to two. The hydride bridges Ru(2) and Ru(3). The C₁₂H₁₅ ligand is bound in the μ_{3} - $2\eta^{-1}$, η^{3} mode to the Ru₃ face. Ru—Ru distances: 2·981 (1) Å (H— bridged), 2·775 (1) and

0108-2701/90/122329-03\$03.00

2.777 (1) Å; The dpam [bis(diphenylarsino)methane] ligand is monodentate with an Ru(3)—As distance of 2.431 (2) Å.

Introduction. The reaction between $Ru_3(CO)_{12}$ and 1,5,9-cyclododecatriene [CDT] results in the complex $Ru_3(\mu-H)(\mu_3-2\eta^1,\eta^3-C_{12}H_{15})$ (1) in high yield (Bruce, Cairns & Green, 1972). These authors have also examined the substitution reaction of complex (1) with PMe₂Ph, P(OMe)₃ and P(OCH₃)₂OEt. However, it was not possible for them to determine the precise stereochemistry of the products formed. As part of our study on the coordination of Group 15 bidentate ligands to transition metal clusters, we have determined the structure of the title compound $Ru_3(\mu-H)(\mu_3-2\eta^1,\eta^3-C_{12}H_{15})(\mu_1-Ph_2AsCH_2AsPh_2)$ -(CO)₈.

© 1990 International Union of Crystallography

^{*} School of Physics.

[†] Chemical Sciences Programme, Centre for Off-Campus Studies.

[‡] School of Chemistry.

[§] To whom correspondence should be addressed.

Table 1. Atomic coordinates ($\times 10^4$, $\times 10^5$ for Ru and As) and B_{eq} values (Å²)

$B_{\rm eq} = 8\pi^2 (U_{11} + U_{22} + U_{33})/3.$						
	x	v	z	Bro		
Rul	- 5569 (1)	- 14307 (1)	- 0	3.63 (2)		
Ru2	- 3418 (1)	- 29458 (1)	15461 (1)	3.36 (2)		
Ru3	- 12167 (1)	-16392 (1)	13269 (1)	3.13 (3)		
Asl	- 17646 (1)	-27145 (1)	23019 (1)	3.35 (4)		
As2	-11647 (1)	- 39189 (1)	39758 (1)	4.68 (3)		
C91	- 1652 (4)	- 2699 (13)	3617 (8)	4.19 (11)		
C12	- 2424 (2)	- 796 (8)	2819 (6)	4.94 (13)		
CI3	- 2822 (2)	- 116 (8)	2739 (6)	6.11 (16)		
C14 C15	-3135(2) -3050(2)	- 1629 (8)	2093 (6)	6.94 (13)		
C16	- 2651 (2)	-2309(8)	1527 (6)	7.46 (14)		
CII	-2338(2)	-1892(8)	2253 (6)	3.89 (14)		
C22	- 1566 (2)	- 5393 (7)	1703 (6)	4.46 (13)		
C23	- 1625 (2)	-6769 (7)	1679 (6)	5.84 (17)		
C24	- 1990 (2)	- 7342 (7)	2109 (6)	5.86 (18)		
C25	- 2296 (2)	- 6538 (7)	2563 (6)	5.91 (13)		
C26	- 2237 (2)	- 5162 (7)	2587 (6)	5.63 (15)		
C21	- 1872 (2)	- 4589 (7)	2157 (6)	3.61 (17)		
C32	- 939 (3)	- 3884 (9)	5907 (7)	7.33 (12)		
C33	- 767 (3)	- 3330 (9)	6717 (7)	7.75 (11)		
C34	- 655 (3)	- 1984 (9)	6742 (7)	8-45 (14)		
C35	-715 (3)	- 1192 (9)	5957 (7)	8.11 (17)		
C36	- 887 (3)	- 1746 (9)	5146 (7)	5.95 (16)		
C31	- 999 (3)	- 3092 (9)	5121 (7)	4.85 (14)		
C42	- 1356 (4)	- 6667 (10)	4242 (8)	6.96 (18)		
C43	- 1585 (4)	-//6/(10)	4583 (8)	9.15 (15)		
C44	-1901(4) -2107(4)	- 7382 (10)	5125 (8)	9.05 (21)		
C45	-1877(4)	- 5199 (10)	3327 (8) 4987 (8)	8.94 (23)		
C41	-1502(4)	-5383(10)	4444 (8)	5.30 (15)		
	-437 (4)	33 (14)	839 (9)	4.73 (17)		
C2R1	-813(5)	- 398 (13)	-949(11)	5.32 (15)		
C3R1	-4 (4)	- 1505 (16)	-618 (13)	7.32 (24)		
C1 <i>R</i> 2	- 244 (4)	- 1865 (13)	2641 (9)	4.51 (23)		
C2R2	- 345 (4)	- 4582 (13)	2138 (9)	4.47 (16)		
C3R2	278 (4)	- 2906 (11)	1329 (10)	4.47 (26)		
C1R3	- 1097 (4)	-423 (12)	2324 (9)	4.21 (18)		
C2R3	- 1614 (4)	-411 (12)	846 (9)	4.36 (19)		
01 <i>R</i> 1	- 355 (3)	915 (10)	1246 (9)	7.29 (22)		
O2 <i>R</i> 1	- 968 (4)	224 (10)	- 1539 (9)	7.74 (17)		
O3 <i>R</i> 1	337 (4)	-1560 (13)	-943 (11)	9.53 (25)		
01 <i>R</i> 2	- 172 (4)	- 1253 (11)	3287 (8)	7.05 (17)		
02 <i>R</i> 2	- 347 (4)	- 5676 (10)	2435 (8)	6.81 (21)		
0382	643 (3)	- 2846 (11)	1211 (9)	7.30 (24)		
0183	- 1047 (3)	329 (10)	2907 (7)	6.32 (16)		
O2R3	- 1864 (3)	326 (9)	521 (8)	6.68 (18)		
CI CI	- 4/9 (3)	-3030(9)	183 (/)	3.05 (17)		
C2	- 1209 (3)	-3419(10) -2571(10)	- 287 (8)	3.74 (24)		
C4	-1209(4) -1576(4)	-2371(10) -2434(12)	- 690 (10)	3.72 (21)		
C5	- 1919 (4)	-3548(12)	-618(10)	4.73 (22)		
Č6	- 1751 (6)	- 4918 (19)	-820(12)	9.01 (16)		
C7	-1574 (5)	- 5424 (23)	- 1435 (24)	10.33 (21)		
C8	- 1349 (5)	-6714 (17)	- 1547 (16)	7.93 (18)		
C9	- 855 (7)	- 6560 (16)	- 1211 (17)	10.88 (25)		
C10	- 710 (7)	- 6496 (17)	- 502 (17)	9.13 (16)		
C101	- 246 (4)	- 6069 (11)	- 140 (11)	5.21 (27)		
C102	- 143 (4)	- 4547 (11)	- 325 (9)	4.55 (23)		

Table 2. Selected bond distances (Å) and bond angles (°) with e.s.d.'s in parentheses

		-	
Ru2-Ru1	2.775 (1)	C1 <i>R</i> 2	1.938 (13)
Ru3—Ru1	2.777 (1)	C2R2—Ru2	1.852 (13)
ClRl-Rul	1.937 (13)	C3R2—Ru2	1.910 (12)
C2R1—Rul	1.883 (14)	Cl-Ru2	2.124 (9)
C3R1-Ru1	1.903 (14)	As1-Ru3	2.431 (2)
Cl-Rul	2.243 (9)	C1R3 - Ru3	1.920 (13)
C2-Rul	2.237 (10)	C^2R^3 —Ru3	1.860 (12)
C3—Rul	2.289 (11)	C3-Ru3	2:054 (12)
Ru3 = Ru2	2.082 (1)	C5 Ku5	2 034 (12)
Rus Ruz	2 702 (1)		
Ru3—Ru1—Ru2	64.9 (1)	Ru3—Ru2—Rul	57.6 (1)
ClR1—Ru1—Ru2	82.6 (4)	C1R2—Ru2—Ru1	112.4 (4)
ClR1-Ru1-Ru3	76.4 (4)	C1R2-Ru2-Ru3	88·6 (4)
C2R1-Ru1-Ru2	168.9 (4)	C2R2-Ru2-Ru1	148.8 (4)
C2R1-Ru1-Ru3	104.0 (4)	C2 <i>R</i> 2—Ru2—Ru3	115.8 (3)
C2R1-Ru1-C1R1	96.4 (6)	C2R2-Ru2-C1R2	97.1 (6)
C3R1-Ru1-Ru2	98-4 (5)	C3R2-Ru2-Ru1	95·1 (4)
C3R1-Ru1-Ru3	163-0 (5)	C3R2Ru2Ru3	148.5 (3)
C3R1—Ru1—C1R1	98.9 (6)	C3R2—Ru2—C1R2	88.3 (5)
C3R1-Ru1-C2R1	92.7 (7)	C3R2-Ru2-C2R2	95·7 (5)
C1-Ru1-Ru2	48.7 (2)	Cl—Ru2—Ru1	52.5 (2)
C1-Ru1-Ru3	85.5 (3)	C1-Ru2-Ru3	82.6 (3)
C1-Ru1-CIR1	131.0 (5)	C1-Ru2-C1R2	164.9 (5)
C1-Ru1-C2R1	132.2 (5)	C1-Ru2-C2R2	97.7 (5)
C1-Ru1-C3R1	85.6 (5)	C1Ru2C3R2	92·8 (5)
C2-Ru1-Ru2	75.8 (3)	Ru2—Ru3—Ru1	57.5 (1)
C2-Ru1-Ru3	76.3 (3)	As1—Ru3—Ru1	157.7 (1)
C2-Ru1-C1R1	150.5 (5)	As1-Ru3-Ru2	110.7 (1)
C2-Ru1-C2R1	100.8 (5)	C1 <i>R</i> 3—Ru3—Ru1	109.3 (3)
C2-Ru1-C3R1	103-9 (6)	C1R3—Ru3—Ru2	91·8 (3)
C2-Ru1-C1	35-2 (4)	C1R3-Ru3-As1	88·9 (4)
C3-Ru1-Ru2	84.3 (3)	C2R3-Ru3-Ru1	99·3 (4)
C3-Ru1-Ru3	46.6 (3)	C2R3—Ru3—Ru2	155·5 (4)
C3-Ru1-C1R1	121.3 (5)	C2R3-Ru3-As1	93·8 (4)
C3-Ru1-C2R1	86.8 (5)	C2R3-Ru3-C1R3	88·8 (5)
C3-Ru1-C3R1	139.6 (6)	C3—Ru3—Ru1	54.1 (3)
C3-Ru1-C1	66.0 (4)	C3—Ru3—Ru2	83.3 (3)
C3-Ru1-C2	37.3 (4)	C3—Ru3—As1	108.6 (3)
		C3-Ru3-C1R3	162.4 (5)
•		C3-Ru3-C2R3	88.8 (5)
			(-/

of 52°. A variable scan speed of $5.0-29.3^{\circ}$ min⁻¹ was used. Lattice parameters refined using 25 reflections in the range $25 < 2\theta < 35^{\circ}$. Standard reflection (2011) checked every 25 reflections: no significant deviation. The data were corrected for Lorentz and polarization effects. 4530 reflections were collected, 4479 unique ($R_{int} = 0.0435$), of which 3721 observed reflections with $I > 2.5\sigma(I)$ were used for refinement of the structure. The three heavy atoms of Ru were first located through SHELXS86 (Sheldrick, 1986) and were then used to initiate the starting phase model for the difference method to reveal the other atoms through SHELX76 (Sheldrick, 1976). Coefficients of scattering factors for C, H, N and O inlaid in SHELX76; coefficients of scattering factors and their anomolous-scattering factors for Ru and As from International Tables for X-ray Crystallography (1974, Vol. IV). Structure determination and performed refinement on IBM 4361/4381. Refinement by blocked full-matrix least squares based on F with anisotropic thermal factors for all the non-H atoms, isotropic for H atoms (block 1: 371 scale, positional and thermal parameters of Ru. dpam and CO atoms; block 2: 388 scale, positional and thermal parameters of Ru, dpam and CDT atoms). H atoms (except metal-bonded hydride) were fixed (C--H 0.96 Å) but not refined. In order to

Experimental. The compound is one of the three products formed from the reaction of $Ru_3(\mu-H)(\mu_3 2\eta^1, \eta^3$ -C₁₂H₁₅) and the arsine ligand in refluxing THF. Red crystals suitable for X-ray analysis were grown from a dichloromethane/methanol mixture by solvent diffusion. Weissenberg and Buerger precession photographs yielded approximate cell dimensions and showed an orthorhombic system with space group $Pca2_1$ from systematic absences 0kl, l = 2n + 11; h0l, h = 2n + 1. Data collection on crystal $0.5 \times$ 0.4×0.2 mm was obtained with Syntex P2₁ diffractometer using $2\theta/\theta$ mode on octant of the sphere (0 < h < 31, 0 < k < 11, 0 < l < 15) out to the 2 θ limit correct the observed structure factors for absorption effects, program ABSORB (Ugozzoli, 1987) was used (transmission factors min.-max.: 0.7451-1.2486). The final agreement factors were R = 0.0432, wR =0.0458. For completeness, the opposite enantiomorph was also refined and convergence was attained at R = 0.0429 and wR = 0.0455. The ratio of wR factors (1.006) is greater than the value of 1.002 required for the Hamilton (1965) R-factor ratio at a probability level of 99.5%. The preferred chirality was chosen as the one having the lower R value. Weights for the observed structure factors calculated according to $w = 1/[\sigma^2(F) + 0.000073F^2]$ for which S = 1.48, $\Delta/\sigma_{max} = 0.649$, $\Delta\rho_{max} = 0.845$ and $\Delta\rho_{min} = -0.531$ e Å⁻³. Atomic coordinates displayed in Table 1 and selected bond distances and bond angles in Table 2.* Geometrical calculations performed with XANADU (Roberts & Sheldrick, 1979) and illustrations drawn with PLUTO (Motherwell & Clegg 1978).

Discussion. The structure analysis confirms the precise stereochemistry of the cluster complex. The structure of the discrete cluster (Fig. 1) reveals the presence of the *triangulo*-Ru₃ found in many species. The C₁₂H₁₅ ligand remains attached to the Ru₃ face by the same μ_3 - $2\eta^1$, η^3 interaction found in the

* Lists of structure factors, anisotropic thermal parameters, full bond lengths, bond angles and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53175 (22 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. A perspective view of the molecule.

parent hydrido complex (Bruce, Cairns, Cox, Green, Smith & Woodward, 1970; Cox & Woodward, 1971). The same mode of attachment has been observed in Ru₃Au₃(μ_3 -2 η^1 , η^3 -C₁₂H₁₅)(CO)₈(PPh₃)₃ (Bruce, Shawkataly & Nicholson, 1984).

The Ru₃ triangle has two short edges [2.775 (1) and 2.777 (1) Å] and one long edge [2.981 (1) Å]; the latter links the two metal atoms Ru(2) and Ru(3) which are η^1 -bonded to the C₁₂ ring and these atoms are also bridged by the hydrido ligand. Ru(3) is also bound to the As atom of the dpam ligand. The analogous separations in Ru₃(μ_3 -2 η^1 , η^3 -C₁₂H₁₅)-(CO)₉ are 2.779 (4), 2.775 (4) and 2.929 (4) Å (Cox & Woodward, 1971). The longer Ru(2)—Ru(3) edge in the present complex presumably results from the presence of the As atom at Ru(3); this trend in the lengthening of the Ru—Ru bond when bonded to a Group 15 ligand has also been observed in Ru₃(CO)_{12-n} L_n complexes (n = 1,3, and L = Group 15 ligand).

The Ru—As distance 2.431 (2) Å is similar to that in Ru₃(CO)₁₁(AsPh₃) [2.464 (1) Å] (Bruce, Liddell, Hughes, Skelton & White, 1988), Ru₃(CO)₉-(AsMe₂Ph)₃ [av. 2.445 (1) Å] (Bruce, Liddell, Shawkataly, Hughes, Skelton & White, 1988), and also Ru₃(μ_2 -dpam)(CO)₁₀ [av. 2.426 (1) Å] (Teoh, Fun & Shawkataly, 1990).

ObS thanks the Malaysian Government and Universiti Sains Malaysia for financial support (R & D Grant No. 123-3203-1402).

References

- BRUCE, M. I., CAIRNS, M. A., COX, A., GREEN, M., SMITH, M. D. H. & WOODWARD, P. (1970). J. Chem. Soc. Chem. Commun. pp. 735–736.
- BRUCE, M. I., CAIRNS, M. A. & GREEN, M. (1972). J. Chem. Soc. Dalton Trans. pp. 1293-1298.
- BRUCE, M. I., LIDDELL, M. J., HUGHES, C. A., SKELTON B. W. & WHITE, A. H. (1988). J. Organomet. Chem. 347, 157-180.
- BRUCE, M. I., LIDDELL, M. J., SHAWKATALY, O., HUGHES, C. A., SKELTON B. W. & WHITE, A. H. (1988). J. Organomet. Chem. 347, 207–235.
- BRUCE, M. I., SHAWKATALY, O. & NICHOLSON, B. K. (1984). J. Organomet. Chem. 275, 223–232.
- Cox, A. & WOODWARD, P. (1971). J. Chem. Soc. pp. 3599-3603.
- HAMILTON, W. C. (1965). Acta Cryst. 18, 502-510.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- ROBERTS, P. & SHELDRICK, G. M. (1979). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1976). SHELX76. A program for crystal structure determination and refinement. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1986). SHELXS86. A program for crystal structure determination. Univ. of Göttingen, Federal Republic of Germany.
- TEOH, S. G., FUN, H. K. & SHAWKATALY, O. (1990). Z. Kristallogr. 190, 287-293.
- UGOZZOLI, G. (1987). Comput. Chem. 2, 109-120.